OBJECTIVE MATHEMATICS Volume 1 Descriptive Test Series

CHAPTER-13 : RECTANGULAR CARTESIAN CO-ORDINATE SYSTEMS AND PAIR OF STRAIGHT LINES (FIRST DEGREE)

UNIT TEST-1

1. If the equation of the pair of straight lines passing through the point (1,1), and making an angle θ with the positive direction of x-axis and the other making the same angle with the positive direction of y-axis is $x^{2}-(a+2) x y+y^{2}+x(x+y-1)=0$, $a-2$, then the value of $\sin 2 \theta$ is
2. If two of the lines represented by $x^{4}+x^{3} y+c x^{2} y^{2}$ $-x y^{3}+y^{4}=0$ bisect the angle between the other two then find the value of c.
3. If x, y, z are different from 1 (one) and are the roots of the equation $t^{3}+t^{2}+t-4=0$ then the points $\left(\frac{x^{3}}{x-1}, \frac{x^{2}-3}{x-1}\right),\left(\frac{y^{3}}{y-1}, \frac{y^{2}-3}{y-1}\right),\left(\frac{z^{3}}{z-1}, \frac{z^{2}-3}{z-1}\right)$
collinear.
4. The triangle $A B C$, right angled at C, has median $A D, B E$ and $C F . A D$ lies along the line $y=x+3, B E$ lies along the line $y=2 x+4$, If the length of the hypotenuse is 60 , find the area of the triangle $A B C$.
5. Show that all the chords of the curve $3 x^{2}-y^{2}-2 x$ $+4 y=0$ which subtend a right angle at the origin are concurrent. Dose this result also hold for the curve, $3 x^{2}+3 y^{2}+2 x+4 y=0$? If yes, what is the point of concurrency and if not, give reasons.
6. P is the point $(-1,2)$, a variable line through P cuts the x and y axes at A and B respectively. Q is the point on $A B$ such that $P A, P Q, P B$ are in $H P$. Find the locus of Q.
7. The equations of the altitudes $A G, B E, C F$ of a triangle $A B C$ are $x+y=0, x+4 y=0$ and $2 x-y=0$ respectively. The coordinates of A are $(t,-t)$. Find coordinates of $B \& C$. prove that if t varies the locus of the centroid of the triangle $A B C$ is $x+5 y=0$.
8. Let the algebraic sum of the perpendicular distances from the points $(2,0),(0,2)$ and $(1,1)$ to a variable straight line be zero. Then the line
passes through a fixed point whose co-ordinates are
9. If the straight lines $a x+b y+p=0$ and $x \cos \alpha+$ $y \sin \alpha-p=0$ enclose an angle $\pi / 4$ between them and meet the straight line $x \sin \alpha-y \cos \alpha=0$ in the same point, then the value of $a^{2}+b^{2}$ is equal to
10. If $4 A^{2}+9 B^{2}-C^{2}+12 A B=0$, then the family of straight lines $A x+B y+C=0$ is either concurrent at ... or at
11. Prove that the lines joining the origin to the points of intersection of circle $(x-h)^{2}+(y-k)^{2}=k^{2}$ with the line $\frac{x}{h}+\frac{y}{k}=2$ will be perpendicular if (h, k) lies on the circle $x^{2}+y^{2}=r^{2}$.
12. Let a and b be non-zero real numbers. Then the equation $\left(a x^{2}+b y^{2}+c\right)\left(x^{2}-5 x y+6 y^{2}\right)=0$ represents
(a) four straight lines, when $c=0$ and a, b are of the same sign
(b) two straight lines and a circle, when $a=b$, and c is of sign opposite to that of a
(c) two straight lines and a hyperbola, when a and b are of the same sign and c is of sign opposite to that of a
(d) a circle and an ellipse, when a and b are of the same sign and c is of a sign opposite to that of a
13. Find the equations of the lines joining the origin to the points of intersection of the lines $y=m x+c$ with the circle $x^{2}+y^{2}=a^{2}$ and find the condition for these lines to be perpendicular.
14. The portion of the line $l x+m y=1$ intercepted by the circle $x^{2}+y^{2}=a^{2}$ subtends an angle of 45° at the centre of the circle. Prove that $4\left[a^{2}\left(l^{2}+m^{2}\right)-\right.$ $1]=\left[a^{2}\left(l^{2}+m^{2}\right)-2\right]^{2}$

Hints and Solutions

1. (a) As both line passes through $(1,1)$ and one line makes angle θ with x-axis and other line with y-axis slopes of line are $\tan \theta$ and $\cot \theta$
Equations of the given lines are $y-1=\tan \theta(x-1)$ and $y-1 \cot \theta(x-1)$
So, their combined equation is $[(y-1)-\tan \theta(x-1)]$
$[(y-1)-\cot \theta(x-1)]=0$
$\Rightarrow(y-1)^{2}-(\tan \theta+\cot \theta)(x-1)(y-1)+(x-1)^{2}=0$
$\Rightarrow x^{2}-(\tan \theta+\cot \theta) x y+y^{2}+(\tan \theta+\cot \theta-2)$

$$
(x+y-1)=0
$$

Comparing with the given equation we get $\tan \theta+\cot$ $\theta=a+2$

$$
\Rightarrow \frac{1}{\sin \theta \cos \theta}=a+2 \Rightarrow \sin 2 \theta=\frac{2}{a+2}
$$

2. (a) As the product of the slopes of the four represented by the given equation is 1 and a pair of line represents the bisectors of the angles between the other two, the product of the slopes of each pair is -1 .
So let the equation of one pair be $a x^{2}+2 h x y-a y^{2}=0$.
The equation of its bisectors is $\frac{x^{2}-y^{2}}{2 a}=\frac{x y}{h}$.
By hypothesis $x^{4}+x^{3} y+c x^{2} y^{2}-x y^{3}+y^{4}$
$=\left(a x^{2}+2 h x y-a y^{2}\right)\left(h x^{2}-2 a x y-h y^{2}\right)$
$=a h\left(x^{4}+y^{4}\right)+2\left(h^{2}-a^{2}\right)\left(x^{3} y-x y^{3}\right)-6 a h x^{2} y^{2}$
Comparing the respective coefficients,
we get $\quad a h=1$
and

$$
c=-6 a h=-6
$$

3. (a) $\Delta=\left|\begin{array}{lll}\frac{y^{3}}{y-1} & \frac{y^{2}-3}{y-1} & 1 \\ \frac{z^{3}}{z-1} & \frac{z^{2}-3}{z-1} & 1\end{array}\right|$

Multiplying R_{1}, R_{2}, R_{3} by $x-1, y-1, z-1$ respectively,

$$
\Delta=\left|\begin{array}{lll}
x^{3} & x^{2}-3 & x-1 \\
y^{3} & y^{2}-3 & y-1 \\
z^{3} & z^{2}-3 & z-1
\end{array}\right|(x-1)(y-1)(z-1)
$$

Apply $C_{1}+C_{2}+C_{3}$ then the new column C_{1} becomes of zeros as x, y, z are roots of $t^{3}+t^{2}+t-4=0$
$\therefore \quad \Delta=0$
Hence the statement is true.
4. (a) Area $(A B C)=3 \operatorname{Arc}(A M B)$

In $\triangle A C B$

$$
\begin{aligned}
& \qquad A F=B F=C F \frac{A B}{2}=30 \\
& C M: M F=2: 1 \\
& \Rightarrow \quad M F=10 \\
& \text { By Apollonius theorem } \\
& A M^{2}+B M^{2}=2\left(C F^{2}+A F^{2}\right) \\
& A M^{2}+B M^{2}=2000
\end{aligned}
$$

Let $<A M B=\theta$

$$
\tan \theta=\frac{M_{B E}-M_{A D}}{1+M_{B E} M_{A D}}=\frac{2-1}{1+2}=\frac{1}{3}
$$

$\Rightarrow \cos \theta \frac{3}{\sqrt{10}}$ and $\sin \theta=\frac{1}{\sqrt{10}}$

$$
\cos \theta=\frac{A M^{2}+B M^{2}-A B^{2}}{2 A M \cdot B M}
$$

$$
\frac{3}{\sqrt{10}}=\frac{2000-3600}{2 A M \cdot B M}
$$

$\Rightarrow A M \cdot B M=-\frac{1600}{6} \sqrt{10}$
Area of $\triangle A M B=\frac{1}{2}(A M)(B M) \sin \theta$

$$
=\frac{1}{2} \times \frac{1600}{6} \sqrt{10} \times \frac{1}{\sqrt{10}}=\frac{400}{3}
$$

Area of $A B C 3 \times$ Area of $\triangle A M B$

$$
=3 \times \frac{400}{3}=400 \text { Sq. units }
$$

5. (a) $15: y=m x+c$

$$
\begin{aligned}
& 3 x^{2}-y^{2}-2 x\left(\frac{y-m x}{c}\right)+4 y\left(\frac{y-m x}{c}\right)=0 \\
& 3 x^{2}-y^{2}-\frac{2 x y}{c}+\frac{2 m x^{2}}{c}+\frac{4 y^{2}}{c}-\frac{4 m x y}{c}=0 \\
& x^{2}\left(3+\frac{2 m}{c}\right)+y^{2}\left(\frac{4}{c}-1\right)+x y\left(-\frac{4 m}{c}-\frac{2}{c}\right)=0
\end{aligned}
$$

Now $\frac{a}{b}=-1$

$$
\begin{array}{lr}
\Rightarrow & \frac{3 c+2 m}{4-c}=-1 \\
\Rightarrow & 3 c+2 m=c-4 \\
\Rightarrow & 2 c+2 m=-4 \\
\Rightarrow & c+m=-2
\end{array}
$$

Point is $(1,-2)$
For $3 x^{2}+3 y^{2}+2 x+4 y=0$
Equation will be
$x^{2}\left(3-\frac{3 m}{c}\right)+y^{2}\left(\frac{4}{c}-1\right)+x y\left(\frac{-4 m}{c}+\frac{2}{c}\right)=0$
$\frac{3 c-2 m}{4-c}=-1$

$$
\begin{aligned}
\Rightarrow \quad 3 c-2 m & =c-4 \\
c-m & =2
\end{aligned}
$$

\Rightarrow Point is $(-1,-2)$
6. (a) The equation of line $(y-2)=m(x+1)$

$$
\Rightarrow \quad \mathrm{A}=\left(\frac{-2}{m}-1,0\right) ; B=(0,2+m)
$$

Assume $Q=(h, k)$
Q is on the line

$$
\begin{aligned}
\Rightarrow & \quad k=2 m(h+1) \\
P Q & =\sqrt{(h+1)^{2}+(k-2)^{2}} \\
& =\sqrt{(h+1)^{2}+m^{2}(h+1)^{2}}=|h+1| \sqrt{m^{2}+1} \\
P A & =\sqrt{\left(\frac{-2}{m}-1+1\right)^{2}+2^{2}=\left|\frac{2}{m}\right| \sqrt{1+m^{2}}} \\
P B & =\sqrt{1+m^{2}}
\end{aligned}
$$

It's given that $P A, P Q, P B$ are in H. P.
$\frac{2}{P Q}=\frac{1}{P A}=\frac{1}{P B}$
$\Rightarrow \frac{2}{|h+1| \sqrt{m^{2}+1}}=\left|\frac{m}{2}\right| \frac{1}{\sqrt{1+m^{2}}}+\frac{1}{\sqrt{1+m^{2}}}$
$\Rightarrow \frac{2}{|h+1|}=\frac{1}{2}\left|\frac{k-2}{h+1}\right|+1$
$\Rightarrow 2|x+1|+|y-2|=4$

If $m<0$ then $=2 x$
If $m>0$ then $2 x+y=4$ (If $x>1$ and $y>2$) $=4$ (If $x<1$ and $y<2$)
7. (a)

$$
m_{B C}=1
$$

$$
m_{A C}=4 \Rightarrow y=4 x-5 t
$$

$$
m_{A B}=\frac{-1}{2}
$$

$\Rightarrow \quad 2 y+x+t=0$
Solving $A B$ and $B E$ we get $x=-4 y$

$$
t=2 y \Rightarrow y=\frac{t}{2} \Rightarrow B=\left(\frac{-4 t}{2}, \frac{t}{2}\right)
$$

$C F$ and $A C \Rightarrow y=2 x$

$$
2 x=5 t \Rightarrow C=\left[\frac{5 t}{2}, 5 t\right]
$$

$G=(h, k)$

$$
\begin{aligned}
& 3 h=t+\frac{5 t}{2}-\frac{4 t}{2} ; 3 k=t+5 t+\frac{t}{2} \\
& h=\frac{t}{2}=\frac{3 t}{2} \Rightarrow k=3 h
\end{aligned}
$$

8. (a) $p_{1}+p_{2}+p_{3}=0$
$\Rightarrow 3(a+b+c)=0$
\therefore Line $a x+b y+c=0$ passes through $(1,1)$.
9. (a) $\tan \frac{\pi}{4}=\frac{a \sin \alpha-b \cos \alpha}{a \cos \alpha+b \sin \alpha}=1$
$\therefore a \sin \alpha-b \cos \alpha=a \cos \alpha+b \sin \alpha$
The condition of concurrency i.e., $\Delta=0$ implies $a \cos \alpha+b \sin \alpha=1$
Hence from (1)
$a \sin \alpha-b \cos \alpha=1$ [by (2)]
Squaring and adding (2) and (3), $a^{2}+b^{2}=2$
10. (a) $(2,3),(-2,-3)$.

The given relation can be written as

$$
(2 A+3 B)^{2}-C^{2}=0
$$

or $(2 A+3 B+C)(2 A+3 B-C)=0$
$\therefore \quad 2 A+3 B+C=0$
or $\quad-2 A-3 B+C=0$
Above relation \Rightarrow that the family of lines

$$
A x+B y+C=0
$$

concur at the point $(2,3)$ or $(-2,-3)$.
11. (a) Making the equation of circle homogeneous.

$$
\begin{aligned}
& \begin{aligned}
& x^{2}+y^{2}-2(h x+k y), \frac{1}{2}\left(\frac{x}{h}+\frac{y}{k}\right) \\
&=\left(h^{2}+k^{2}-r^{2}\right) \cdot \frac{1}{4}\left(\frac{x}{h}+\frac{y}{k}\right)^{2} \\
& A+B=0 \Rightarrow\left(\frac{h^{2}+k^{2}-r^{2}}{4}\right)\left(\frac{1}{h^{2}}+\frac{1}{k^{2}}\right)=0 \\
& \therefore \quad h^{2}+k^{2}-r^{2}=0, a s \frac{1}{h^{2}}+\frac{1}{k^{2}} \neq 0
\end{aligned}
\end{aligned}
$$

\therefore Locus of (h, k) is $x^{2}+y^{2}=r^{2}$.
12. (b) $x^{2}-5 x y+6 y^{2}=0$

$$
\Rightarrow \quad(x-3 y)(x-2 y)=0
$$

Above represents two straight lines through (0,0).

$$
\begin{array}{ll}
& a x^{2}+b y^{2}+c=0 \\
\Rightarrow \quad & x^{2}+y^{2}=\frac{c}{a}
\end{array}
$$

where, $c=0$ and a and b are of same sign i.e., of the form $5 x^{2}+9 y^{2}=0$. This not possible.
When $a=b$ and c is of sign opposite to that of a then
from (1), 2nd factor is $x^{2}+y^{2}=+$ ive $=k^{2}$. Hence a circle \Rightarrow (b) is correct.
Both (c)and (d) are obviously incorrect.
13. (a) From the equation $\frac{y-m x}{c}=1$.
$\therefore x^{2}+y^{2}=a^{2} . l^{2}$,
or $x^{2}+y^{2}=a^{2} \frac{(y-m x)^{2}}{c^{2}}$
$\left(c^{2}-a^{2} m^{2}\right) x^{2}+2 a m^{2} x y+\left(c^{2}-a^{2}\right) y^{2}=0$.
If it represents two perpendicular straight lines, then coeff. of $x^{2}+$ coeff. of $y^{2}=0$.

$$
c^{2}-a^{2} m^{2}+c^{2}-a^{2}=0
$$

$2 c^{2}=a^{2}\left(1+m^{2}\right)$ is the required condition.
14. The centre of the circle is origin. The equations of the lines joining origin to the points of intersection of the line and circle are

$$
\begin{gathered}
x^{2}+y^{2}=a^{2}(l x+m y)^{2} \\
\text { or } x^{2}\left(a^{2} l^{2}-l\right)+2 \operatorname{lm} a^{2} x y+y^{2}\left(a^{2} m^{2}-l\right)=0 \\
A x^{2}+2 H x y+B y^{2}=0 \\
\tan 45^{\circ}=1=\frac{2 \sqrt{H^{2}-A B}}{4+B} \\
(A+B)^{2}=4\left[H^{2}-A B\right] \\
{\left[a^{2}\left(l^{2}+m^{2}\right)-2\right]^{2}=4\left[a^{2}\left(l^{2}+m^{2}\right)-1\right]}
\end{gathered}
$$

